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Teaching What Degrees of Freedom Are In Statistics 
 

Kenneth Sutrick, Murray State University, Murray, Kentucky, USA 
 
ABSTRACT 
 
One of the most confusing topics in statistics is degrees of freedom.  Everyone is taught that the sample standard 
deviation has 𝑛 − 1 degrees of freedom.  Why is this the case since you use all 𝑛 data points to compute the standard 
deviation?   The paper shows why this is the case by showing that the sample standard deviation can be broken 
down into 𝑛 − 1 independent parts and that the last deviation can be absorbed into these independent parts. After 
that a related technique shows what degrees of freedom are about in the important cases of regression and analysis 
of variance.  
 
Keywords:  sample standard deviation, degrees of freedom, degrees of freedom in multiple regression, degrees of 
freedom in analysis of variance.  
 
INTRODUCTION 
 
In introductory statistics degrees of freedom are a mystery. In beginning statistics degrees of freedom are first 
encountered in the sample standard deviation which is used in t-confidence intervals and t-tests for the population 
mean 𝜇. Students are taught that the sample standard deviation, in this case, causes the t-distribution to have 𝑛 − 1 
degrees of freedom when there are 𝑛 data points.  The sample standard deviation is also used to find confidence 
intervals for the population standard deviation 𝜎 where this confidence interval is calculated using the chi-square 
distribution which also has degrees of freedom.  The next place where degrees of freedom are usually met is in 
regression where they are even more complicated. This paper presents ways of teaching degrees of freedom that can 
be understood in introductory classes.  It is possible to understand what degrees of freedom are in an elementary 
statistics context, for the most part, without having to go all the way to advanced statistics and mathematics. The 
first section of the paper discusses degrees of freedom in the standard deviation context.  The second section talks 
about degrees of freedom in regression, and the third section covers degrees of freedom for the ANOVA Table in 
regression. The fourth section covers degrees of freedom in Analysis of Variance problems. 
 
 DEGREES OF FREEDOM FOR THE STANDARD DEVIATION 
 
Suppose you have a data set with 𝑛 = 6 data points: 𝑋1 = 5, 𝑋2 = 1,  𝑋3 = 4,  𝑋4 = 2,  𝑋5 = 6, and 𝑋6 = 6. These 
data points came from a population that is being studied and give general information about the population.  For 
example you can use this data to draw a histogram, as in Figure 1, to infer the shape of the population. 

Figure 1: The Data Histogram 

. 
This histogram is skewed to the left suggesting that the population may be skewed to the left.  The 𝑋-values in this 
section will be considered as variables since they depend on what data points from the population have been 
collected. 
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It is almost always the case that the original data is transformed to get other information about the population such 
as its center and such as how spread out the population is.  The measures from the data of center and spread, the 
sample average and the sample standard deviation, are used to estimate the unknown 𝜇 and 𝜎 of the population that 
is being studied. These measures are calculated below for the above data.    
 
The sample average is: 

𝑆𝑎𝑚𝑝𝑙𝑒𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑋� =
5 + 1 + 4 + 2 + 6 + 6

6 =
24
6 = 4. 

The spread in the data is measured around the average.  The first step in computing the standard deviation is to find 
how far each data point is from the average.  The rest of the steps, as are taught in statistics, are given in Table 1. 
 
Table 1:  Computing the Standard Deviation  

                Deviations                  Squared  
Data     from the Average          Deviations 
   𝑋               𝑋 − 𝑋�                    (𝑋 − 𝑋�)2 
   5        𝑑1 = 5 − 4 = 1             𝑑1

2 = 1            
   1        𝑑2 = 1 − 4 = −3          𝑑2

2 = 9 
   4        𝑑3 = 4 − 4 = 0             𝑑3

2 = 0      
   2        𝑑4 = 2 − 4 = −2          𝑑4

2 = 4 
   6        𝑑5 = 6 − 4 = 2             𝑑5

2 = 4 
   6        𝑑6 = 6 − 4 = 2             𝑑6

2 = 4            
                    Sum = 0            Sum = SSX  = 22                     (SSX = Sum of Squares X). 
 
The sample standard deviation is defined as: 

𝑆𝑎𝑚𝑝𝑙𝑒𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = 𝑠 = �𝑆𝑆𝑋
𝑛−1

= �𝑑12+𝑑22+𝑑32+𝑑42+𝑑52+𝑑62

6−1
= � 22

6−1
≈ 2.1.                                                                                                                                                 

 
From these calculations one would estimate that the center of the population is about 4 and that the spread in the 
population around 4 is about 2.1.  This section of the paper explains why here in the calculation of “𝑠” you should 
divide by 6 − 1 and not 6, or in the general case what the difference between 𝑛 and 𝑛 − 1 is all about. 
 
The standard deviation is interpreted as follows: The standard deviation represents a typical distance or deviation of 
a data point from the average. The second column in Table 1, containing the deviations from the average, 𝑋 − 𝑋�, 
tells you how far each data point is from the average.  For example the data point 5 with a deviation of 1 is one unit 
from the average of 4, while the data point 1 with a negative deviation is three units below the average. A typical 
number in the column of deviations is 2 (ignoring the minus signs).  The fact that standard deviation of about 2.1 is 
close to this typical number 2 is not a coincidence. This always happens when you compute the standard deviation.  
It will always be the case that the standard deviation will be close to a typical number on the list of 𝑋 − 𝑋�, and this 
is a useful way of understanding what the standard deviation measures.  
 
The reason the standard deviation is calculated as in Table 1, with the subtracting the average, then squaring, adding, 
and everything else, has to do with the normal curve. If your data is normal you can prove that the optimal way to 
measure spread is via the above calculation. In this data the quantity 𝑆𝑆𝑋 in the computation of 𝑠 is calculated from 
the six deviations: 𝑑1, 𝑑2, …, 𝑑6  yet is said to have 5 degrees of freedom. To start to see why this is the case, in 
Table 1 you can see that the deviations, defined as:  𝑑1 = 𝑋1 − 𝑋�, 𝑑2 = 𝑋2 − 𝑋�, …, 𝑑6 = 𝑋6 − 𝑋�, satisfy 𝑑1 + 𝑑2 +
𝑑3 + 𝑑4 + 𝑑5 + 𝑑6 = 0. The consequence of this is that the deviations are related at least a little, so that in this case 
𝑑6 = −𝑑1 − 𝑑2 − 𝑑3 − 𝑑4 − 𝑑5.  This is evident in Table 1 since: 𝑑6 = 2 =  −1 − (−3) − 0 − (−2)− 2.   

Therefore you do not even need 𝑑6 since you can always get it from the other five deviations if necessary.  The 
sample standard deviation here is really a function of the five numbers: 𝑑1, 𝑑2, …, 𝑑5, 
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 𝑠 = �𝑆𝑆𝑋
𝑛−1

= �(1)2+(−3)2+(0)2+(−2)2+(2)2+(2)2

6−1
= �𝑑12+𝑑22+𝑑32+𝑑42+𝑑52+(−𝑑1−𝑑2−𝑑3−𝑑4−𝑑5)2

6−1
. 

This is the first indication that 𝑠 here has 5 degrees of freedom and not 6, the number of squares in Table 1. [The 
fact that the deviations add to zero is true for every data set since once you take away the middle what’s left adds to 
zero.]   
 
A good way to think about degrees of freedom is to think of a degree of freedom as a piece of information.   The six 
data points: 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, and 𝑋6 have 6 pieces of general information about the population or 6 degrees of 
freedom.  Given the original data, 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑋6, you can calculate 𝑋�, 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5. However since 
𝑋1 = 𝑋� + 𝑑1, 𝑋2 = 𝑋�+𝑑2, …, 𝑋6 = 𝑋� + 𝑑6 = 𝑋� − 𝑑1 − 𝑑2 − 𝑑3 − 𝑑4 − 𝑑5, then given 𝑋�, 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5 
you can get back 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, and 𝑋6.  Since you can go back and forth between both sets (of six numbers), 
they must contain the same amount of information about the population.  Consequently the numbers: 𝑋�, 𝑑1, 
𝑑2, 𝑑3, 𝑑4, and 𝑑5 must contain 6 pieces of information, it is just that the information is in a different form.  Instead 
of general information about the population, the numerical value of 𝑋� has one degree of freedom that measures the 
center of the population, the values of 𝑑1, 𝑑2, 𝑑3, 𝑑4, and 𝑑5 have 5 degrees of freedom that measure the spread in 
the population. The original data could be transformed in other ways to get other information about the population 
such as its skewness and kurtosis and you could even divert some of the information in the 𝑑’s toward that purpose.  
However if there are six data points there is a maximum of six independent pieces of information available to study 
the population. The researcher can then decide to what purposes that information should be used. For studying the  
degrees of freedom in the standard deviation we will assume that all information other than that in 𝑋� will be used for 
measuring spread.  In statistics it is common to assume that the data points 𝑋1, 𝑋2, … are statistically independent so 
that each point gives additional information about the population.  Under this assumption you can prove that 𝑑𝑖 and 
𝑑𝑗 are correlated, this is evident since the 𝑑’s sum to zero. This basically means that some of the information about 
spread that is in 𝑑𝑖 is also contained in 𝑑𝑗.  It is this fact that makes studying the behavior of 𝑆𝑆𝑋 more complicated. 
In the next paragraph 𝑆𝑆𝑋 is separated into its uncorrelated parts. Before moving on, a key idea to notice in this 
paragraph is that to measure center and spread you must transform the original data.  For example, you can write: 
 𝑋� = (1 6)𝑋1 + ⋯+ (1 6)𝑋6⁄⁄ ,  𝑑1 = (5 6)𝑋1 − (1 6)𝑋2 −⁄ ⋯− (1 6)𝑋6⁄⁄ , and so on. 
 
The sample average, sample standard deviation, sample skewness and kurtosis are all transformations of the data. 
Transformations are a constant feature of statistics. The idea that the sample standard deviation above has 5 degrees 
of freedom can be made even more exact if you consider a slightly different and perhaps more complicated 
transformation of the original data.   We will define the transformation first and then discuss the properties of the 
transformation.  Let 

                                                                                      𝑍1 = 𝑋�,     

                                                                                    𝑍2 = 𝑋1−𝑋2
√2

,   

                                                                                  𝑍3 = 𝑋1+𝑋2−2𝑋3
√6

,                                                                      (1) 

                                                                                𝑍4 = 𝑋1+𝑋2+𝑋3−3𝑋4
√12

,  

                                                                              𝑍5 = 𝑋1+𝑋2+𝑋3+𝑋4−4𝑋5
√20

, 

                                                                            𝑍6 = 𝑋1+𝑋2+𝑋3+𝑋4+𝑋5−5𝑋6
√30

. 

For understanding degrees of freedom it is not necessary to know why the 𝑍’s are defined this way or even how 
these 𝑍’s were calculated, they come from the subject of linear algebra. The details of this can be left to advanced 
statistics and advanced mathematics. For understanding degrees of freedom what you need to know is that the 𝑍’s 
defined this way have the properties detailed in the next two paragraphs and that it is always possible to find such 
𝑍’s for every data set.  These 𝑍’s are uncorrelated.  A little about where the 𝑍’s come from is discussed below in the 
general case, but the square roots turn out to be absolutely necessary for the above and for everything below. 
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In Equation 1 from the 𝑋’s you compute the 𝑍’s. However it is also true that given the 𝑍’s you can get the 𝑋’s back.  

For example: 𝑋6 = 𝑍1 − �5
6
𝑍6,  𝑋5 = 𝑍1 − �4

5
𝑍5 + � 1

30
𝑍6 and it is possible to write down the formulas for 𝑋4, 𝑋3, 

𝑋2, and 𝑋1 if you need to.  The exact formulas for the 𝑋’s in terms of the 𝑍’s are not important.  The important fact 
here is that you can go from the the 𝑋’s to the 𝑍’s and vice versa, so accordingly they must contain the same amount 
of information about the population, just in different forms.  Even more specifically, given 𝑑1, …, 𝑑6 you can find 
𝑍2, …, 𝑍𝑛 and vice versa.  For example: 𝑑1 = 1

√2
𝑍2 + 1

√6
𝑍3 + 1

√12
𝑍4 + 1

√20
𝑍5 + 1

√30
𝑍6, 𝑑2 = − 1

√2
𝑍2 + 1

√6
𝑍3 +

1
√12

𝑍4 + 1
√20

𝑍5 + 1
√30

𝑍6, and so on and 𝑍2 = 1
√2
𝑑1 −

1
√2
𝑑2 + 0𝑑3 + 0𝑑4 + 0𝑑5 + 0𝑑6, 𝑍3 = 1

√6
𝑑1 + 1

√6
𝑑2 −

2
√6
𝑑3 + 0𝑑4 + 0𝑑5 + 0𝑑6 etc.  Therefore 𝑑1, …, 𝑑6 and 𝑍2, …, 𝑍𝑛 contain the same information, in this case all of 

this information is about spread. The important property of the 𝑍’s is that it is always the case that no matter what 
the 𝑋’s are, the following equation holds:  

                         𝑆𝑆𝑋 = 𝑑1
2 + 𝑑2

2 + 𝑑3
2 + 𝑑4

2 + 𝑑5
2 + 𝑑6

2 = 𝑍22 + 𝑍32 + 𝑍42 + 𝑍52 + 𝑍62.                                      (2) 

So that  

𝑠 = �𝑍2
2 + 𝑍32 + 𝑍42 + 𝑍52 + 𝑍62

6 − 1 . 

The information in the 6 correlated 𝑑’s has been transferred to the last 5 uncorrelated 𝑍’s.  The 𝑍’s have extracted 
the independent pieces of information about spread that are available in the 𝑑’s. 
 
To check Equation 2, if  𝑋1 = 5, 𝑋2 = 1,  𝑋3 = 4,  𝑋4 = 2,  𝑋5 = 6, and 𝑋6 = 6, then 𝑍1 = 4, 𝑍2 = 4

√2
, 𝑍3 = −2

√6
, 

𝑍4 = 4
√12

, 𝑍5 = −12
√20

, and  𝑍6 = −12
√30

,  and it is easy to verify that:  𝑆𝑆𝑋 = 𝑑1
2 + 𝑑2

2 + 𝑑3
2 + 𝑑4

2 + 𝑑5
2 + 𝑑6

2 =
12+−32+02+−22+22+22=22=162+46+1612+14420+14430=𝑍22+𝑍32+𝑍42+𝑍52+𝑍62.  Just to check 
that you can get the 𝑑’s from the 𝑍’s, using the formulas in the previous paragraph: 𝑑1 = 1

√2
� 4
√2
�+ 1

√6
�−2
√6
�+

1
√12

� 4
√12

�+ 1
√20

�−12
√20

�+ 1
√30

�−12
√30

� = 1, and so on.  [If the data were different, for example if:  𝑋1 = 5, 𝑋2 = 1,  
𝑋3 = 3,  𝑋4 = 2,  𝑋5 = 6, and 𝑋6 = 7, then 𝑋� = 4, 𝑑1 = 1, 𝑑2 = −3, 𝑑3 = −1, 𝑑4 = −2, 𝑑5 = 2, 𝑑6 = 3, 𝑍1 = 4, 
𝑍2 = 4

√2
, 𝑍3 = 0, 𝑍4 = 3

√12
, 𝑍5 = −13

√20
, and  𝑍6 = −18

√30
.   Again you can check that: 𝑆𝑆𝑋 = (1)2 + (−3)2 + (−1)2 +

(−2)2 + (2)2 + (3)2 = 28 = 16
2

+ 0 + 16
12

+ 169
20

+ 324
30

= 𝑍22 + 𝑍32 + 𝑍42 + 𝑍52 + 𝑍62.  Again to check that you can get 

the 𝑑’s from the 𝑍’s:  𝑑2 = − 1
√2
� 4
√2
�+ 1

√6
(0) + 1

√12
� 3
√12

�+ 1
√20

�−13
√20

� + 1
√30

�−18
√30

� = −3, and so on.] 

 
Through Equation 1 and Equation 2 you can get to the sample standard deviation 𝑠 in one of two ways. The first 
way, which is the definition of the sample standard deviation, is to use the 𝑋’s to compute 𝑑1, …, 𝑑6  and then get 𝑠 
through 𝑆𝑆𝑋. The second way is to start with the 𝑋’s, then use Equation 1 to get 𝑍2, …, 𝑍6, then use these to get 
𝑆𝑆𝑋 and 𝑠 through Equation 2.   Since with the 5 numbers 𝑍2, 𝑍3, 𝑍4, 𝑍5, and 𝑍6 you can get 𝑆𝑆𝑋 and 𝑠 (and even 
get 𝑑1, …, 𝑑6) these 5 numbers contain the totality of the information that there is in the data set for measuring the 
spread in the population. This shows that the sample standard deviation 𝑠 is really made up of 5 numbers and 
therefore really has 5 degrees of freedom. In a sense the information in 𝑑6 has been absorbed into 𝑍2 through 𝑍6.  So 
in total the 𝑍’s have 6 degrees of freedom, one degree of freedom in 𝑍1 = 𝑋� for measuring the center of the 
population, and 5 degrees of freedom in 𝑍2, 𝑍3, 𝑍4, 𝑍5, and 𝑍6 for measuring the spread in the population. 
 
 
The previous analysis extends to 𝑛 data points, not just 6 data points, and the sample standard deviation will have 
𝑛 − 1 degrees of freedom.  Again 𝑍1 = 𝑋�, but now for the rest of the 𝑍’s the general 𝑍𝑖, for 𝑖 = 2 to 𝑖 = 𝑛,  is given 
by:     
                                                                    𝑍𝑖 = 𝑋1+⋯+𝑋𝑖−1−(𝑖−1)𝑋𝑖

�𝑖(𝑖−1)
. 
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Exactly what the 𝑍’s are is not important, what is important is that it is the case always that: 𝑆𝑆𝑋 = 𝑍22 + 𝑍32 + ⋯+
𝑍𝑛2, no matter what the 𝑋’s are.  All the information in the data about spread in the population is contained in the 
numbers: 𝑍2, 𝑍3, …, 𝑍𝑛, showing that 𝑆𝑆𝑋 has exactly 𝑛 − 1 degrees of freedom.  The property that the 𝑍’s have 
that make this happen is that if 𝑍𝑝 = 𝑝1𝑋1 + 𝑝2𝑋2 + ⋯+ 𝑝𝑛𝑋𝑛  and 𝑍𝑞 = 𝑞1𝑋1 + 𝑞2𝑋2 + ⋯+ 𝑞𝑛𝑋𝑛 and if 𝑝1𝑞1 +
𝑝2𝑞2 + ⋯+ 𝑝𝑛𝑞𝑛 = 0, as in Equation 1, then this will make 𝑍𝑝 and 𝑍𝑞 uncorrelated. If {𝑝1, … ,𝑝𝑛} is considered to 
be a vector then the purpose of �𝑖(𝑖 − 1) in the 𝑍’s is to give these vectors all a length of 1.  For that reason square 
roots are ubiquitous in this paper.   In advanced mathematics it is shown that lots of such sets like {𝑝1, … , 𝑝𝑛} and 
{𝑞1, … ,𝑞𝑛} exist. These types of sets will be used over and over again in the rest of the paper. 
 
If we assume that 𝑋1, 𝑋2, …, 𝑋𝑛 are independent and have normal distributions, with mean 𝜇 and standard deviation 
𝜎, then statisticians have proved, as mentioned previously, that the correlation between 𝑍𝑖 and 𝑍𝑗 is zero for 𝑖 ≠ 𝑗.  
This makes the 𝑍’s very different than the previous 𝑑’s, the original deviations.  Under these assumptions 
statisticians have proved that 𝑍2, 𝑍3, …, 𝑍𝑛 are normal with mean 0 and standard deviation 𝜎, in addition to being 
uncorrelated.  By definition when you square and add uncorrelated normal mean 0 random variables, such as in 
𝑍22 + 𝑍32 + ⋯+ 𝑍𝑛2, the chi-square distribution comes into play with degrees of freedom equal to the number of 
squared variables, here 𝑛 − 1.  A chi-square distribution means that a formula has been found for calculating 
probabilities in this sums of squares situation just as a formula for the normal curve has been found and is used to 
calculate probabilities when the data is normal.  Therefore chi-square distributions become relevant when you are 
measuring spread. When statisticians talk about degrees of freedom they are really talking about the degrees of 
freedom in the situation generated chi-square distribution.  The original 𝑆𝑆𝑋, adds up squared correlated deviations 
and there is no simple distribution that can be applied to that situation. That is how and why one must go to the 
uncorrelated 𝑍’s to figure out the behavior of the original 𝑆𝑆𝑋.  
 
In the above, part of the data was used to measure the center of the population which is measured with 𝑋�.  Suppose 
now that your Fairy God Mother told you the exact value of the population mean 𝜇. Then it would not be necessary 
to use the data to estimate the center since you would know that the center is 𝜇. That would signify that all of the 
data in the sample could then be used to measure the spread in the population.  Let 𝑍1 = 𝑋1 − 𝜇, 𝑍2 = 𝑋2 − 𝜇, …, 
𝑍𝑛 = 𝑋𝑛 − 𝜇 and let: 

𝜎� = �𝑆𝑆𝑋
𝑛 = �𝑍1

2 + 𝑍22 + ⋯𝑍𝑛2

𝑛 . 

This 𝜎� would measure the spread in the population and 𝑆𝑆𝑋 would indeed have 𝑛 degrees of freedom since it would 
use all of the 𝑛 independent pieces of information in the 𝑋’s for spread. The behavior of 𝑆𝑆𝑋 would be determined 
by a chi-square distribution with 𝑛 degrees of freedom if the 𝑋’s are normal. Statisticians can prove that 𝜎� tends to 
correctly measure the size of the population standard deviation 𝜎, meaning 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝜎�) ≈ 𝜎 (see Bickel and 
Doksum, 1977, or Mood, Graybil, and Boes, 1974). 
 
To see one last way why the quantity 𝑛 − 1 is used in the sample standard deviation, consider the following 
function: 𝑆𝑆𝑋(𝜐) = (𝑋1 − 𝜈)2 + ⋯+ (𝑋𝑛 − 𝜐)2, which is a function of the 𝑋’s and a parameter 𝜐.  The function is 
graphed in Figure 2. 

Figure 2:  The Function 𝑺𝑺𝑿(𝝊) 

. 
 

𝑆𝑆𝑋(𝜈) 

𝜈 = 𝑋�              𝜈 = 𝜇 
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The function 𝑆𝑆𝑋(𝜐), it can be proved, has a minimum at 𝜈 = 𝑋� so that  𝑆𝑆𝑋(𝑋�) < 𝑆𝑆𝑋(𝜇) for the Fairy God 
Mother’s 𝜇. If 𝜎�, which is based on 𝑆𝑆𝑋(𝜇)/𝑛, tends to have the correct size then an estimate of spread based on 
𝑆𝑆𝑋(𝑋�)/𝑛 would tend to be too small. This too small quantity can be made bigger by dividing by the smaller 
number 𝑛 − 1 rather than dividing by 𝑛, so that 𝑆𝑆𝑋(𝑋�) 𝑛⁄ < 𝑆𝑆𝑋(𝑋�) (𝑛 − 1)⁄ . Statisticians have proved that 
𝑆𝑆𝑋(𝑋�) (𝑛 − 1)⁄  tends to have the correct size, and thus 𝑠, the sample standard deviation, which is based on this 
quantity satisfies 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑠) ≈ 𝜎.  The final thought for all of this is that taking 𝜈 = 𝑋� in 𝑆𝑆𝑋(𝜐) just fits the 
data, the 𝑋’s, too well compared to 𝜐 = 𝜇, making 𝑆𝑆𝑋(𝑋�)/𝑛 too small. If your Fairy God Mother is mad at you and 
you do not have any knowledge of 𝜇 then you have no choice but to use 𝑠, but if your Fairy God Mother is a happy 
camper it will be more efficient to use 𝜎�. 
 
DEGREES OF FREEDOM IN REGRESSION 
 
Suppose in a regression problem there are two predictor variables 𝑋1 and 𝑋2 and a response variable 𝑌 which is a 
function of 𝑋1 and 𝑋2 plus a random error term 𝜀, i.e. specifically assume that 𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝜀.  The 
values 𝛼, 𝛽1, and 𝛽2 are unknown parameters to be estimated from the data. A different error term 𝜀 turns up for 
each set of observations collected and it is assumed that the (set of) errors are independent.  It is common in 
regression to assume, and we will assume, that the 𝑋-values are fixed and that the 𝑌-values are the variables. The 
𝑌’s that turn up will depend on the fixed 𝑋-values but also on the particular random error 𝜀’s that show up in the 
data. This is in contrast to the previous section where the 𝑋-values were the variables that could change, but are now 
fixed. 
 
To estimate the parameters, a regression equation is fit to the data.  Students are taught that estimates of the typical 
size of the prediction error when there are two predictor variables would have 𝑛 − 3 degrees of freedom, when there 
are 𝑛 triplets of data (𝑋1,𝑋2,𝑌).  These degrees of freedom for error usually appear for the first time in the 
Regression ANOVA Table. Why these are the degrees of freedom for the error term is the topic of this section.  To 
understand what the degrees of freedom are, in this regression context, we again resort to transformations of the data 
as was done in the previous section.  Now both the 𝑋’s and the 𝑌’s will be transformed, but only 𝑌 will be 
considered a variable that can change.   
 
For an example a cell phone company will want to predict the data requirements of its customers and will most 
likely use regression to make the predictions. Suppose the predictor variables are 𝑋1 the family household income 
(in tens of thousands of dollars), and 𝑋2 the size of the family. The dependent variable 𝑌, which is a function of the 
𝑋’s (and the random error), will be the yearly number of gigabytes of cell phone data used by the household.  
Suppose a hypothetical data set of 𝑛 = 5 triplets of data is (𝑋1,𝑋2,𝑌) = (4,2,36), (6,2,41), (7,4,47), (11,6,83), and 
(12,6,73).  Below is the regression output for these triplets from Excel. 

 
Figure 3:   Regression Output 

 
 

SUMMARY OUTPUT

Regression Statistics
Multiple R 0.961558094
R Square 0.924593968
Adjusted R Square 0.849187935
Standard Error 8.062257748
Observations 5

ANOVA
df SS MS F Significance F

Regression 2 1594 797 12.26154 0.075406
Residual 2 130 65
Total 4 1724

Coefficients Standard Error t Stat P-value Lower 95% Upper 95%
Intercept 12 10.81665383 1.1094 0.382787 -34.5403 58.5403
Income 3 4.163331999 0.7205 0.54601 -14.9134 20.9134
FamilaySize 5 7.059272862 0.7082 0.552189 -25.3736 35.3736
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From the printout, the regression equation for this data set is: 𝑌 = 12 + 3𝑋1 + 5𝑋2.  To see how well this equation 
fits this data we compute the root mean square prediction error (𝑅𝑀𝑆𝐸) in Table 2.  
 
Table 2: Root Mean Square Error Calculations for the Regression Equation   

                    Actual 𝑌        Predicted 𝑌 = 𝑌�        Prediction Error     Squared Error                                             
 𝑋1     𝑋2           𝑌           𝑌� = 12 + 3𝑋1 + 5𝑋2         𝑌 − 𝑌�                    �𝑌 − 𝑌��

2
       

 4        2       𝑌1 = 36              𝑌�1 = 34                     𝑒1 = 2                   𝑒12 = 4                        
 6        2       𝑌2 = 41              𝑌�2 = 40                     𝑒2 = 1                  𝑒22 = 1                        
 7        4       𝑌3 = 47              𝑌�3 = 53                     𝑒3 = −6               𝑒32 = 36                                                     
11       6       𝑌4 = 83              𝑌�4 = 75                     𝑒4 = 8                  𝑒42 = 64                                                     
12       6       𝑌5 = 73              𝑌�5 = 78                     𝑒5 = −5               𝑒52 = 25                                           
                                                                                    Sum=0          Sum= 𝑆𝑆𝐸 = 130       

              [𝑆𝑆𝐸 = Sum of Squares Error.],  𝑅𝑀𝑆𝐸 = �𝑆𝑆𝐸
𝑛

= �130
5
≈ 5.0990.                                                                                                                                                                                 

A typical prediction error for the regression equation is approximately 5 which represents a typical number on the 
list of prediction errors: 𝑌 − 𝑌� (ignoring the minus signs).  From Table 2 you can see: 𝑒1 + 𝑒2 + 𝑒3 + 𝑒4 + 𝑒5 = 0, 
similar to the previous section. [This is true not just in this case but is true, in every regression data set, that the sum 
of the predictions errors is zero.] The prediction errors are therefore linked and in regression there is an even 
stronger relationship among the 𝑒’s than there is for the 𝑑’s in the standard deviation (where the last deviation was a 
function of the first 𝑛 − 1 deviations).  In regression when there are two predictors it always turns out that the last 
three prediction errors are always functions of the first 𝑛 − 3 prediction errors.  Since 𝑛 = 5 for the cell phone data 
this tells us that for this data 𝑒3, 𝑒4 and 𝑒5 are functions of 𝑒1 and 𝑒2. Given the 𝑋’s in this data set it can be derived 
that always 𝑒3 = −2𝑒1 − 2𝑒2, 𝑒4 = 2𝑒1 + 4𝑒2, and 𝑒5 = −𝑒1 − 3𝑒2, no matter what the 𝑌’s are.  For the cell phone 
data this checks with Table 2 since: 𝑒3 = −2(2)− 2(1) = −6, 𝑒4 = 2(2) + 4(1) = 8, and 𝑒5 = −(2)− 3(1) =
−5.  [If the data instead had been: 𝑌1 = 36, 𝑌2 = 40, 𝑌3 = 54, 𝑌4 = 74, and 𝑌5 = 86 with the same 𝑋’s, then it is 
easy to check that the regression equation becomes: 𝑌 = 10 + 4𝑋1 + 4𝑋2 with 𝑒1 = 2,  𝑒2 = −2,  𝑒3 = 0,  𝑒4 =
−4, and 𝑒5 = 4. So again: 𝑒3 = −2(2)− 2(−2) = 0,  𝑒4 = 2(2) + 4(−2) = −4, and 𝑒5 = −(2)− 3(−2) = 4.] 
These relationships state that there is no more additional information about prediction error in 𝑒3, 𝑒4 and 𝑒5 than 
there already is in of 𝑒1 and 𝑒2.  
   
The 𝑒’s are obviously correlated since some are explicit functions of others, but for the degrees of freedom in 𝑆𝑆𝐸 
we can now rewrite 𝑆𝑆𝐸 as  

𝑆𝑆𝐸 = 𝑒12 + 𝑒22 + 𝑒32 + 𝑒42 + 𝑒52 = 𝑒12 + 𝑒22 + (−2𝑒1 − 2𝑒2)2 + (2𝑒1 + 4𝑒2)2 + (−𝑒1 − 3𝑒2)2. 

This suggests that 𝑆𝑆𝐸 has only two degrees of freedom despite the fact that originally it is computed with 5 
numbers. Similar to what was done in the previous section this relationship can be made even more exact by making 
a slightly more complicated transformation of the 𝑒’s which separates 𝑆𝑆𝐸 into its uncorrelated parts. For these 𝑋’s 
if you let 𝑒1′ = (5 √10)⁄ 𝑒1 + 0𝑒2 and 𝑒2′ = �−15 √30⁄ �𝑒1 − √30𝑒2 then it is always the case that:  

                                                 𝑆𝑆𝐸 = 𝑒12 + 𝑒22 + 𝑒32 + 𝑒42 + 𝑒52 = 𝑒1′
2 + 𝑒2′

2.                                                     (3) 

Here 𝑒1′  and 𝑒2′  have extracted and contain in totality all of the independent information that is available in the data 
for estimating the size of a typical prediction error, and in addition they are uncorrelated. All of the information 
available in 𝑒1 to 𝑒5 has been transferred to 𝑒1′  and 𝑒2′  so that 𝑆𝑆𝐸 in this example is really a function of exactly two 
numbers demonstrating that 𝑆𝑆𝐸 has exactly two degrees of freedom.  For the original data  𝑒1′ = √10 and  𝑒2′ =
−2√30 so that:  𝑆𝑆𝐸 = 𝑒12 + 𝑒22 + 𝑒32 + 𝑒42 + 𝑒52 = (2)2 + (1)2 + (−6)2 + (8)2 + (−5)2 = 130 = �√10�

2
+

�−2√30�
2

= 10 + 120 = 𝑒1′
2 + 𝑒2′

2. 
 
The exact numbers involved in this example are not important.   The important fact is that in every regression data 
set, a relationship such as in Equation 3 always exists.  [This is true no matter what the 𝑌’s are, for if 𝑌1 = 36, 
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𝑌2 = 40, 𝑌3 = 54, 𝑌4 = 74, and 𝑌5 = 86, with the errors for these 𝑌’s reported above, and which give 𝑆𝑆𝐸 = 40,  
have 𝑒1′ = √10 and  𝑒1′ = √30  so that 𝑒1′

2 + 𝑒2′
2 = 10 + 30 = 40.]   

In terms of understanding degrees of freedom in regression the formulas for the values of 𝑎, 𝑏1, 𝑏2, 𝑒1′ , 𝑒2′   should be 
considered as transformations of the 𝑌’s.  For these 𝑋’s it can be calculated that: 

𝑎 = 𝑌1 + .2𝑌2 + .6𝑌3 − .2𝑌4 − .6𝑌5, 
𝑏1 = −.2𝑌1 + (1 3⁄ )𝑌2 − (4 15⁄ )𝑌3 − (1 15⁄ )𝑌4 + .2𝑌5, 
𝑏2 = .2𝑌1 − (2 3⁄ )𝑌2 + (13 30⁄ )𝑌3 + (7 30⁄ )𝑌4 − .2𝑌5, 

𝑒1′ = �2 √10⁄ �𝑌1 − �1 √10⁄ �𝑌2 − �2 √10⁄ �𝑌3 + 0𝑌4 + �1 √10⁄ �𝑌5, 
𝑒2′ = 0𝑌1 − �1 √30⁄ �𝑌2 + �2 √30⁄ �𝑌3 − �4 √30⁄ �𝑌4 + �3 √10⁄ �𝑌5. 

 
For example for the original cell phone data this checks as:  𝑎 = 36 + .2(41) + .6(47)− .2(83)− .6(73) = 12, 
and so on. [It also checks for the other set of 𝑌’s just above.] 
 
This transformation can be reversed and you can show that: 

                                   𝑌1 = 𝑎 + 4𝑏1 + 2𝑏2 + �2 √10⁄ �𝑒1′ + 0𝑒2′ = 𝑌�1 + 𝑒1,  
                                   𝑌2 = 𝑎 + 6𝑏1 + 2𝑏2 − �1 √10⁄ �𝑒1′ − �1 √30⁄ �𝑒2′    = 𝑌�2 + 𝑒2, 
                                   𝑌3 = 𝑎 + 7𝑏1 + 4𝑏2 − �2 √10⁄ �𝑒1′ + �2 √30⁄ �𝑒2′ = 𝑌�3 + 𝑒3,  
                                   𝑌4 = 𝑎 + 11𝑏1 + 6𝑏2 + 0𝑒1′ − �4 √30⁄ �𝑒2′ = 𝑌�4 + 𝑒4.   
                                   𝑌5 = 𝑎 + 12𝑏1 + 6𝑏2 + �1 √10⁄ �𝑒1′ + �3 √30⁄ �𝑒2′ = 𝑌�4 + 𝑒5.   
 
The coefficients in these ten equations depend on the fixed 𝑋 values, and such relationships exist in every regression 
data set. Since you can go from  𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5 to 𝑎, 𝑏1, 𝑏2 , 𝑒1′ , 𝑒2′ , and back again, the two sets (of five numbers) 
must have the same amount of information, just in a different form.  The five degrees of freedom in 𝑌1, 𝑌2, 𝑌3, 𝑌4, 𝑌5  
become one degree of freedom for the intercept 𝑎, two degrees of freedom total for the slopes, one each in 𝑏1 and 
𝑏2, and two degrees of freedom in 𝑒1′ , and 𝑒2′  for the error such that 𝑆𝑆𝐸 = 𝑒1′

2 + 𝑒2′
2, and showing that 𝑆𝑆𝐸 has 

precisely two degrees of freedom. 
 
In general in regression with 𝑘 predictors with the model 𝑌 = 𝛼 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + ⋯+ 𝛽𝑘𝑋𝑘 + 𝜀, and 𝑛 sets 
of observations on both the independent and dependent variables, the 𝑛 degrees of freedom in 𝑌1, 𝑌2, 𝑌3, …, 𝑌𝑛 
become one degree of freedom for 𝑎, 𝑘 degrees of freedom in 𝑏1, 𝑏2, 𝑏3, …, 𝑏𝑘 , and 𝑛 − 𝑘 − 1 degrees of freedom 
for 𝑆𝑆𝐸 from 𝑒1′ , 𝑒2′ , 𝑒3′ , …, 𝑒𝑛−𝑘−1′ , such that 𝑆𝑆𝐸 = 𝑒1′

2 + 𝑒2′
2 + ⋯+ 𝑒𝑛−𝑘−1′ 2.   

In advanced statistics it can be shown that 𝑅𝑀𝑆𝐸, which divides 𝑆𝑆𝐸 by 𝑛, tends to underestimate the size of a 
typical prediction error, in a similar way as to what happens in the sample standard deviation (the 𝑎, 𝑏1, 𝑏2, 𝑏3, …, 
𝑏𝑘 , estimated from the data, fit the data too well to appropriately measure average error size). If we had our Fairy 
God Mother’s help again and she told us the real values of the intercept 𝛼 and the slopes 𝛽1, 𝛽2, 𝛽3,…, then we 
would not have to use the data to estimate them and could devote all of the data to estimate the size of a typical 
error. In the absence of a Fairy God Mother, a more accurate estimate of the size of a typical prediction error, than 
𝑅𝑀𝑆𝐸, is given by the standard error of estimate 𝑠: 

                                                𝑅𝑀𝑆𝐸 = �𝑒12+𝑒22+⋯+𝑒𝑛2

𝑛
 

                                            𝑠 = � 𝑆𝑆𝐸
𝑛−𝑘−1

= �𝑒12+𝑒22+⋯+𝑒𝑛2

𝑛−𝑘−1
�𝑒1′

2+𝑒2′
2+⋯+𝑒𝑛−2′ 2

𝑛−𝑘−1
.   

The RMSE from Table 2 was 5.0990, while the standard error of estimate 𝑠 from the printout was 8.0623, and 
8.0623 would be a more accurate measure of typical error size.  The same symbol 𝑠 is used both for the sample 
standard deviation and the standard error of estimate, the context tells you what situation you are in. 
 
If the error terms 𝜀 in the regression data are independent and have normal distributions with mean zero then 𝑒1′ , 𝑒2′ , 
𝑒3′ , …, and 𝑒𝑛−𝑘−1′  are uncorrelated and have normal distributions with mean zero.   In  𝑆𝑆𝐸 you are squaring and 
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adding uncorrelated normal mean zero random variables and so the chi-square distribution with 𝑛 − 𝑘 − 1 degrees 
of freedom makes an appearance, as is detailed in textbooks. When statisticians talk about degrees of freedom in this 
regression context also, they are referring to the degrees of freedom in the generated chi-square distribution. 
 
THE DEGREES OF FREEDOM IN THE REGRESSION ANALYSIS OF VARIANCE TABLE 
 
In a regression printout, such as in the Excel printout in Figure 3, one will often see an Analysis of Variance 
(ANOVA) Table of the form: 

ANOVA                                                     SS                                                                         df 
Regression                   𝑆𝑆𝑅 = ∑�𝑌� − 𝑌��

2
= 𝑏1′

2 + 𝑏2′
2 + 𝑏3′

2 + ⋯+ 𝑏𝑘′
2                          𝑘 

Error (or Residual)      𝑆𝑆𝐸 = ∑�𝑌 − 𝑌��
2

= 𝑒1′
2 + 𝑒2′

2 + ⋯+ 𝑒𝑛−𝑘−1′ 2           𝑛 − (𝑘 + 1) = 𝑛 − 𝑘 − 1 
Total                            𝑆𝑆𝑌(𝑎𝑙𝑠𝑜 𝑐𝑎𝑙𝑙𝑒𝑑 𝑆𝑆𝑇) = ∑(𝑌 − 𝑌�)2                                            𝑛 − 1.  
 
That 𝑆𝑆𝑌 has 𝑛 − 1 degrees of freedom is the topic of the first section.  The 𝑏𝑖′ have not been defined yet in the 
paper, so to do this note that 𝑆𝑆𝑅 is based on 𝑌� and 𝑌�.  Since by definition 𝑌� = 𝑎 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯+ 𝑏𝑘𝑋𝑘  for 
each set of 𝑋1,…, 𝑋𝑘 and since statisticians can prove that 𝑌� = 𝑎 + 𝑏1𝑋�1 + 𝑏2𝑋�2 + ⋯+ 𝑏𝑘𝑋�𝑘,  it is the case that 
𝑆𝑆𝑅 = ∑�𝑌� − 𝑌��

2
= ∑[𝑏1(𝑋1 − 𝑋�1) + 𝑏2(𝑋2 − 𝑋�2) + ⋯+ 𝑏𝑘(𝑋𝑘 − 𝑋�2)]2, so that 𝑆𝑆𝑅 is a somewhat complicated 

function of 𝑏1, 𝑏2, 𝑏3, …, 𝑏𝑘 .  In the cell phone data you can compute that 𝑆𝑆𝑅 = 46𝑏1
2 + 52𝑏1𝑏2 + 16𝑏2

2.  For 
that data 𝑏1 = 3 and 𝑏2 = 5, which results in 𝑆𝑆𝑅 = 1594, as is verified in the Excel printout in Figure 3.   In this 
form it is not exactly clear how 𝑆𝑆𝑅 behaves or more specifically what distribution 𝑆𝑆𝑅 has.  As in previous 
situations this behavior is complicated since 𝑏1 and 𝑏2 are correlated in general. However here if we define 𝑏1′ =
2√10𝑏1 + √10𝑏2 and  𝑏2′ = √6𝑏1 + √6𝑏2 then 𝑆𝑆𝑅 = 𝑏1′

2 + 𝑏2′
2 and it is also the case that 𝑏1′  and 𝑏2′  are 

uncorrelated and therefore separate 𝑆𝑆𝑅 into its uncorrelated parts.  This is not just good luck, such transformations 
exist in every regression data set.  In the cell phone example then: 𝑏1′ = 11√10  and 𝑏2′ = 8√6 so that 𝑆𝑆𝑅 = 𝑏1′

2 +
𝑏2′

2 = �11√10�
2

+ �8√6�
2

= 1210 + 384 = 1594. [This will be true no matter what the 𝑌’s are. If 𝑌1 = 36, 
𝑌2 = 40, 𝑌3 = 54, 𝑌4 = 74, 𝑌5 = 86,  then 𝑏1 = 4, 𝑏2 = 4, 𝑆𝑆𝑅 = 46(42) + 52(4)(4) + 16(42) = 1824,  𝑏1′ =
12√10, 𝑏2′ = 8√6, so that 𝑆𝑆𝑅 = 𝑏1′

2 + 𝑏2′
2 = �12√10�

2
+ �8√6�

2
= 1440 + 384 = 1824.]  The 𝑏′’s can also be 

expressed in terms of the 𝑌’s and for the 𝑋’s in the cell phone data it can be shown that: 
𝑏1′ = −�2 √10⁄ �𝑌1 + 0𝑌2 − �1 √10⁄ �𝑌3 + �1 √10⁄ �𝑌4 + �2 √10⁄ �𝑌5 

𝑏2′ = 0𝑌1 − �2 √6⁄ �𝑌2 + �1 √6⁄ �𝑌3 + �1 √6⁄ �𝑌4 + 0𝑌5. 

It is possible to get 𝑏1 and 𝑏2 back from 𝑏1′  and 𝑏2′ , so that the set {𝑏1, 𝑏2} and the set {𝑏1′ , 𝑏2′ } contain the same 
information, just from a transformed perspective. 
 
In the general case with 𝑘 predictors there always exist 𝑏1′ , 𝑏2′ , 𝑏3′ , …, 𝑏𝑘′  which are functions of 𝑏1, 𝑏2, …, 𝑏𝑘 , and 
such that 𝑆𝑆𝑅 = 𝑏1′

2 + 𝑏2′
2 + 𝑏3′

2 + ⋯+ 𝑏𝑘′
2.   If the 𝑌’s have normal distributions then under the null hypothesis 

𝛽1 = 0, 𝛽2 = 0, …, 𝛽𝑘 = 0, you can show that  𝑏1′ , 𝑏2′ , 𝑏3′ , …, 𝑏𝑘′  are all uncorrelated independent normal and mean 
zero, and when squaring them in 𝑆𝑆𝑅, 𝑆𝑆𝑅’s behavior is obtained from a chi-square distribution with 𝑘 degrees of 
freedom. The entirety of the information in the data about the stated null hypothesis is contained in 𝑏1′ , 𝑏2′ , 𝑏3′ , …, 
𝑏𝑘′ .  This hypothesis test involves both 𝑆𝑆𝑅 and 𝑆𝑆𝐸, the signal in 𝑆𝑆𝑅 compared to the noise in 𝑆𝑆𝐸.  The 𝐹-
statistic in the printout in Figure 3 is 𝐹(𝑆𝑡𝑎𝑡) = [𝑆𝑆𝑅 𝑘⁄ ] [𝑆𝑆𝐸 (𝑛 − 𝑘 − 1)⁄ ]⁄  which is an appropriately scaled ratio 
of chi-square distributions and has an 𝐹-distribution.  An 𝐹-distribution simply means that someone found a formula 
for calculating the probability that 𝐹(𝑆𝑡𝑎𝑡) will be a small number, a big number, or something in between.  In an 
𝐹-test these probabilities can be used to decide if 𝐹(𝑆𝑡𝑎𝑡) provides evidence for or against that null hypothesis. 
 
In ANOVA the quantity 𝑆𝑆𝑅, in total, has k degrees of freedom, one for 𝑏1, one for 𝑏2, …, and  one for 𝑏𝑘 .  The 𝑌1, 
𝑌2, …, 𝑌𝑛 have 𝑛 degrees of freedom. The sum of squares 𝑆𝑆𝑅 and 𝑆𝑆𝐸 combined have 𝑘 + (𝑛 − 𝑘 − 1) =  𝑛 − 1 
degrees of freedom.  The remaining one degree of freedom is for the intercept 𝑎. The intercept is not represented in 
this type of ANOVA Table but is represented in other forms of Regression ANOVA Tables (such as in Draper and 
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Smith, 1966).  Finally in the above table the word “Residual” is another name for “Error”.  Residual represents what 
is left of 𝑌 after you make the prediction, i.e., after you take away the predicted value 𝑌� from 𝑌 you get a residual, in 
other words: 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝑌 − 𝑌� . 
 
The theory of regression writes regression models in terms matrices and the well-developed mathematics of matrices 
was used to compute the funny numbers in the paper. This theory can ultimately be used to prove the properties 
specified in this paper and put forth in statistics books.  
 
DEGREES OF FREEDOM IN ANALYSIS OF VARIANCE PROBLEMS 
 
Analysis of Variance Problems consist of One Way ANOVA, Two Way ANOVA without replications, Two Way 
ANOVA with replications with or without interaction terms, Three Way ANOVA with or without two way 
interactions with or without three way interactions, Four Way ANOVA, etc.   The same logic as in the previous 
sections of the paper apply to this case as well. Consider a Two Way ANOVA problem without replications with the 
data and model presented in Table 3.  A Two Way ANOVA has two different factors that affect the data and each 
factor will have multiple levels.  For the hypothetical data in Table 3, on weights of two week old piglets, the two 
factors are gender and type of feed.  
 
Table 3:  Weights of Piglets 
                                                                               Factor B: Gender 
                    Weight                            Female                                         Male 
                 Feed Type 1      𝑌11 = 𝜇 + 𝛼1 + 𝛽1 + 𝜀11 = 13   𝑌12 = 𝜇 + 𝛼1 + 𝛽2 + 𝜀12 = 19    
                 Feed Type 2      𝑌21 = 𝜇 + 𝛼2 + 𝛽1 + 𝜀21 = 9     𝑌22 = 𝜇 + 𝛼2 + 𝛽2 + 𝜀22 = 11 
                 Feed Type 3      𝑌31 = 𝜇 + 𝛼3 + 𝛽1 + 𝜀31 = 14   𝑌32 = 𝜇 + 𝛼3 + 𝛽2 + 𝜀32 = 12 
 
For a Two Way ANOVA without replications, with r levels of Factor A and c levels of Factor B, the general form of 
the ANOVA Table is as follows: 

 
The data in Table 3 has r =3 and c = 2.  Below is ANOVA Printout from Excel for that data: 

 
 
If we let 𝑌�� = 𝑌11+⋯+𝑌32

6
, 𝑌�𝑖∙ = 𝑌𝑖1+𝑌𝑖2

2
, and 𝑌�∙𝑗 =

𝑌1𝑗+𝑌2𝑗+𝑌3𝑗
3

, then 𝑆𝑆𝑌 = ∑∑�𝑌𝑖𝑗 − 𝑌���
2
, 𝑆𝑆𝐴 = ∑∑�𝑌�𝑖∙ − 𝑌���

2
,   

𝑆𝑆𝐵 = ∑∑�𝑌�∙𝑗 − 𝑌���
2
, and 𝑆𝑆𝐸 = ∑∑�𝑌𝑖𝑗 − 𝑌�𝑖∙ − 𝑌�∙𝑗 + 𝑌���

2
.    

 
Consider the transformation of this data defined by: 
 
 

𝑌�� = 𝑌11 6⁄ + 𝑌21 6⁄ + 𝑌31 6⁄ + 𝑌12 6⁄ + 𝑌22 6⁄ + 𝑌32 6⁄ = 13, 
𝑎1′ = 2𝑌11 √12⁄ − 𝑌21 √12⁄ − 𝑌31 √12⁄ + 2𝑌12 √12⁄ − 𝑌22 √12⁄ − 𝑌32 √12⁄ = 18 √12⁄ , 

ANOVA
Source of Variation SS df MS F
Rows (Factor A) SSA r -1 SSA /(r -1) MSA/MSE
Columns (Factor B) SSB c -1 SSB /(c -1) MSB/MSE
Error SSE (r -1)(c -1) SSE /[(r -1)(c -1)]
Total SSY rc -1

ANOVA
Source of Variation SS df MS F P-value F crit
Rows (A: FeedType) SSA = 36 2 18 2.25 0.307692 19
Columns (B: Gender) SSB = 6 1 6 0.75 0.477767 18.5128
Error SSE = 16 2 8
Total SSY = 58 5

Factor A: 
Feed 
Type 
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𝑎2′ = 0𝑌11 + 𝑌21 2⁄ − 𝑌31 2⁄ + 0𝑌12 + 𝑌22 2⁄ − 𝑌32 2⁄ = −3, 
𝑏1′ = 𝑌11 √6⁄ + 𝑌21 √6⁄ + 𝑌31 √6⁄ − 𝑌12 √6⁄ − 𝑌22 √6⁄ − 𝑌32 √6⁄ = −√6, 

𝑒1′ = 2𝑌11 √12⁄ − 𝑌21 √12⁄ − 𝑌31 √12⁄ + 2𝑌12 √12⁄ − 𝑌22 √12⁄ − 𝑌32 √12⁄ = −√12, 
𝑒2′ = 0𝑌11 + 𝑌21 2⁄ − 𝑌31 2⁄ + 0𝑌12 − 𝑌22 2⁄ + 𝑌32 2⁄ = −2. 

 
Given 𝑌��, 𝑎1′ , 𝑎2′ , 𝑏1′ , 𝑒1′ , and 𝑒2′  you can get back 𝑌11, 𝑌21, 𝑌31, 𝑌12, 𝑌22, and 𝑌32.  This transformation has the property 
that no matter what the 𝑌’s are, in this three levels for A and two levels for B example, it is the case that: 𝑆𝑆𝐴 =
𝑎1′

2 + 𝑎2′
2, so that 𝑆𝑆𝐴 has two degrees of freedom, 𝑆𝑆𝐵 = 𝑏1′

2, so that 𝑆𝑆𝐵 has one degree of freedom, and 
𝑆𝑆𝐸 = 𝑒1′

2 + 𝑒2′
2, so that 𝑆𝑆𝐸 has two degrees of freedom.  For the above 𝑌’s this is verified since: 𝑆𝑆𝐴 =

�18 √12⁄ �
2

+ (−3)2 = 36,  𝑆𝑆𝐵 = �−√6�
2

= 6, and  𝑆𝑆𝐸 = �−√12�
2

+ (−2)2 = 16.  If the 𝑌’s are normal, the 
behavior of 𝑆𝑆𝐴, 𝑆𝑆𝐵, and 𝑆𝑆𝐸 can be determined from chi-square distributions with the reported degrees of 
freedom. 
 
The above ANOVA Table has four rows of effects. A complete Three Way ANOVA will have nine rows of effects 
(Scheffé 1959, 123) including main effects and interactions.  Statisticians have proved that such transformations as 
above exist for every ANOVA problem. In ANOVA, if 𝑆𝑆𝑍 has 𝑚 degrees of freedom there will always be 𝑚 
transformations of the 𝑌’s, 𝑧1′ , …, 𝑧𝑚′ , such that 𝑆𝑆𝑍 = 𝑧1′

2 + ⋯𝑧𝑚′
2.  Using this method it can be proved that the 

degrees of freedom for the main effects, the two way interactions, the three way interactions, the measurement errors 
and so on, are those degrees of freedom that are detailed in textbooks.  Systematic procedures exist for finding the 
appropriate transformations in each ANOVA case (Haberman, 1974, pp. 150-153) and they then can then be used to 
determine the behavior of 𝑆𝑆𝐴, 𝑆𝑆𝐵, etc. through the chi-square distribution. While we have only done proof by 
example in this paper, all of this has been made mathematically precise in the general case. 
 
CONCLUSION   
 
The words “Degrees of Freedom” are used all the time in statistics.  For most people who have had a statistics class, 
the idea of degrees of freedom still remains a mystery.  This paper shows where degrees of freedom come from at a 
relatively elementary level, for both the standard deviation and in regression and finally in ANOVA. The paper does 
this by considering the sample average, the sample standard deviation, and regression coefficient estimates as 
transformations of the data. By appropriately defining transformations of the data, the number of degrees of freedom 
in each situation is revealed and from that their properties are discerned. If the data comes from a normal 
distribution then squaring things, as in the standard deviation, leads to chi-square distributions. When statisticians 
talk about degrees of freedom they are really referring to the degrees of freedom of the chi-square distribution that 
each statistical situation brings about.  Everything you ever wanted to know about degrees of freedom was discussed 
in the paper. 
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